Overview of Mahadev's Protocol for Classical Verification of Quantum Computation PhD Interview - Technical Talk

Alexander Kulpe

2023-08-29

Table of Contents

Introduction

Mahadev's Protocol

Commitment Challenge Measurement

Security Properties

Table of Contents

Introduction

Mahadev's Protocol

Commitment Challenge Measurement

Security Properties

Quantum Computations

Quantum computation give an advantage over classical computation in

- Simulating Quantum Systems
- Optimization
- Factorization / Discrete Logarithms
- . . .

Quantum Computations

Quantum computation give an advantage over classical computation in

- Simulating Quantum Systems
- Optimization

• . . .

• Factorization / Discrete Logarithms

Verifying quantum computations is important:

- Errors in computations / Verifying integrity
- Validation of Quantum Algorithms
- Verifying Quantum Supremacy
- Building Trust
- . . .

Quantum Computations

Quantum computation give an advantage over classical computation in

- Simulating Quantum Systems
- Optimization

• . . .

• Factorization / Discrete Logarithms

Verifying quantum computations is important:

- Errors in computations / Verifying integrity
- Validation of Quantum Algorithms
- Verifying Quantum Supremacy
- Building Trust

•

Verifying quantum computations classically is not feasible

 \Rightarrow Mahadev's Protocol: Use cryptography and interact classically with the quantum computer

Short History Lesson

- 2004: Question whether a classical computer can verify the result of a quantum computation through interaction is raised.
- BQP \subseteq PSPACE = IP, but powerful prover
- What if the Prover has to be efficient?
- Approach 1: Verifier has access to small quantum computer (error-correcting codes)

- Approach 2: Play multiple provers against each other (CHSH)
- Can we verify by only interacting with one prover without small quantum computer?

Table of Contents

Introduction

Mahadev's Protocol

Commitment Challenge Measurement

Security Properties

• [KSV02]: *k*-LOCAL HAMILTONIAN is QMA-complete (quantum analogue of NP). An eigenstate with sufficiently low energy is witness.

- [KSV02]: *k*-LOCAL HAMILTONIAN is QMA-complete (quantum analogue of NP). An eigenstate with sufficiently low energy is witness.
- [BL08]: Energy can be estimated by standard/Hadamard basis measurements.

- [KSV02]: *k*-LOCAL HAMILTONIAN is QMA-complete (quantum analogue of NP). An eigenstate with sufficiently low energy is witness.
- [BL08]: Energy can be estimated by standard/Hadamard basis measurements.
- [FHM18]: Protocol with trusted measurement device:
 - 1. Verifier reduces x to local Hamiltonian H_x
 - 2. Verifier requests state from prover
 - 3. Verifier checks if received state has low energy with respect to H_x . If energy is low, Verifier accepts.

- [KSV02]: *k*-LOCAL HAMILTONIAN is QMA-complete (quantum analogue of NP). An eigenstate with sufficiently low energy is witness.
- [BL08]: Energy can be estimated by standard/Hadamard basis measurements.
- [FHM18]: Protocol with trusted measurement device:
 - 1. Verifier reduces x to local Hamiltonian H_x
 - 2. Verifier requests state from prover
 - 3. Verifier checks if received state has low energy with respect to H_x . If energy is low, Verifier accepts.

• What if we don't have access to trusted measurement device?

Mahadev's Protocol - Overview

 \leq LWE

- Measurement protocol: Classical verifier (BPP) using q. prover (BQP) as trusted measurement device
- Forces Prover to:
 - construct n qubit state of her choice
 - measure each qubit in Hadamard or Standard basis
 - report measurement result to verifier
- Soundness enforced based on LWE assumption: If verifier accepts, there exists a quantum state underlying the measurement result that is independent of the verifier's measurement choice

Commitment Phase

Definition (TCF+)

A function family $\mathcal{F} = \{f_{i,0}, f_{i,1} : \mathcal{X} \to \mathcal{D}\}$ is called TCF+ if

- there exists ppt $\operatorname{Gen}_{\mathcal{F}}$: $(i, \operatorname{td}_i) \leftarrow \operatorname{Gen}_{\mathcal{F}}(1^{\lambda})$
- $f_{i,0}, f_{i,1}$ injective with same image
- there exists ppt Inv that given $i, td_i, y \in D$, finds both preimages: $(x_0, x_1) \leftarrow Inv(i, td_i, y)$
- adaptive Hardcore bit: ∀d ≠ 0∀ claws (x₀, x₁) is is hard to compute both d · (x₀ ⊕ x₁) and a preimage x₀ or x₁; ∃ d s.t. ∀ claws (x₀, x₁) the bit d · (x₀ ⊕ x₁) is the same and indistinguishable from uniform

approximate $\mathsf{TCF}+\mathsf{\,can}$ be built from LWE

Commitment Phase

Definition (TCF+)

A function family $\mathcal{F} = \{f_{i,0}, f_{i,1} : \mathcal{X} \to \mathcal{D}\}$ is called TCF+ if

- there exists ppt $\operatorname{Gen}_{\mathcal{F}}$: $(i, \operatorname{td}_i) \leftarrow \operatorname{Gen}_{\mathcal{F}}(1^{\lambda})$
- $f_{i,0}, f_{i,1}$ injective with same image
- there exists ppt Inv that given $i, td_i, y \in \mathcal{D}$, finds both preimages: $(x_0, x_1) \leftarrow Inv(i, td_i, y)$
- adaptive Hardcore bit: ∀d ≠ 0∀ claws (x₀, x₁) is is hard to compute both d · (x₀ ⊕ x₁) and a preimage x₀ or x₁; ∃ d s.t. ∀ claws (x₀, x₁) the bit d · (x₀ ⊕ x₁) is the same and indistinguishable from uniform

approximate $\mathsf{TCF}+\mathsf{\,can}$ be built from LWE

≤LWE

- The Verifier samples TCF+ functions and sends $f_{i,0}, f_{i,1}$ to the Prover.
- Prover entangles a quantum state of his choice with a claw $y = f_{i,0}(x_0) = f_{i,1}(x_1)$ and sends y to the verifier

Commitment Phase

Definition (TCF+)

A function family $\mathcal{F} = \{f_{i,0}, f_{i,1} : \mathcal{X} \to \mathcal{D}\}$ is called TCF+ if

- there exists ppt $\operatorname{Gen}_{\mathcal{F}}$: $(i, \operatorname{td}_i) \leftarrow \operatorname{Gen}_{\mathcal{F}}(1^{\lambda})$
- $f_{i,0}, f_{i,1}$ injective with same image
- there exists ppt Inv that given $i, td_i, y \in D$, finds both preimages: $(x_0, x_1) \leftarrow Inv(i, td_i, y)$
- adaptive Hardcore bit: ∀d ≠ 0∀ claws (x₀, x₁) is is hard to compute both d · (x₀ ⊕ x₁) and a preimage x₀ or x₁; ∃ d s.t. ∀ claws (x₀, x₁) the bit d · (x₀ ⊕ x₁) is the same and indistinguishable from uniform

approximate $\mathsf{TCF}+\mathsf{\,can}$ be built from LWE

\leq LWE

- The Verifier samples TCF+ functions and sends $f_{i,0}, f_{i,1}$ to the Prover.
- Prover entangles a quantum state of his choice with a claw $y = f_{i,0}(x_0) = f_{i,1}(x_1)$ and sends y to the verifier

$$\left|\psi\right\rangle = \sum_{b \in \{0,1\}} \alpha_b \left|b\right\rangle \rightarrow \sum_{x \in \mathcal{X}} \sum_{b \in \{0,1\}} \alpha_b \left|b\right\rangle \left|x\right\rangle \left|f_{i,b}(x)\right\rangle \xrightarrow{f_{i,b}(x)=y} \sum_{b \in \{0,1\}} \alpha_b \left|b\right\rangle \left|x_b\right\rangle = \mathsf{Enc}(\left|\psi\right\rangle)$$

Challenge

TEST

• Verifier requests preimage (b, x_b) of y

 $\mathsf{Enc}(\ket{\psi}) = \sum_{b \in \{0,1\}} lpha_b \ket{b} \ket{x_b}$

⇒ Prover can measure in standard basis and sends result to the prover

Challenge

TEST

• Verifier requests preimage (b, x_b) of y

 $\mathsf{Enc}(\ket{\psi}) = \sum_{b \in \{0,1\}} lpha_b \ket{b} \ket{x_b}$

⇒ Prover can measure in standard basis and sends result to the prover

H-MEASURE

• Prover applies H to entire encoded state, measures second register and sends result r to the verifier

 $\mathsf{Enc}(|\psi\rangle) \xrightarrow{H} X^{d \cdot (x_0 \oplus x_1)} H |\psi\rangle$

• Verifier decodes measurement by XORing $d \cdot (x_0 \oplus x_1)$ to r

Standard Basis Measurement

Definition (TIF+)

A function family $\mathcal{G} = \{g_{i,0}, g_{i,1} : \mathcal{X} \to \mathcal{D}\}$ is called TIF+ if

- there exists ppt $\operatorname{Gen}_{\mathcal{G}} : (i, \operatorname{td}_i) \leftarrow \operatorname{Gen}_{\mathcal{G}}^{(1^{\lambda})}$
- $g_{i,0}, g_{i,1}$ injective with distinct images
- there exists ppt $Inv_{\mathcal{G}}$ that given, $i, td_i, y \in \mathcal{D}$ finds preimage $x \leftarrow Inv_{\mathcal{G}}(i, td_i, y)$
- $(f_{i,0}, f_{i,1})$ computationally indistinguishable from $(g_{i,0}, g_{i,1})$

This acts as standard basis measurement:

$$\left|\psi\right\rangle = \sum_{b \in \{0,1\}} \alpha_b \left|b\right\rangle \to \sum_{x \in \mathcal{X}} \sum_{b \in \{0,1\}} \alpha_b \left|b\right\rangle \left|x\right\rangle \left|g_{i,b}(x)\right\rangle$$

Given $y = g_{i,b}(x)$ the Verifier can reconstruct measurement result b using trapdoor

Verifier uses y to recover measurement result; ignores Hadamard measurement result

Protocol - Overview

Verifier chooses basis:

- Hadamard: send TCF+ $(f_{i,0}, f_{i,1})$
- Standard: send TIF+ $(g_{i,0}, g_{i,1})$

Verifier either:

- tests state structure or
- request measurement result
- \Rightarrow Apply this protocol for every qubit in parallel

Table of Contents

Introduction

Mahadev's Protocol

Commitment Challenge Measurement

Security Properties

Completeness

- Reduce problem to *k*-local-Hamiltonian
- Verifier chooses measurement basis
- Prover commits to ground state
- Prover measures honestly and sends measurement result
- Verifier can deduce that the commited state has low enough energy

If verifier accepts, there exists a quantum state underlying the measurement result that is independent of the verifier's measurement choice

If verifier accepts, there exists a quantum state underlying the measurement result that is independent of the verifier's measurement choice

Definition (Pauli Twirl (Informal))

- Conjugation of unitary U by random Pauli
- $(X^x Z^z)^{\dagger} U(X^x Z^z)$
- averaging over random Paulis \Rightarrow effect of Pauli

If verifier accepts, there exists a quantum state underlying the measurement result that is independent of the verifier's measurement choice

• Prover's state must have been of the form:

 $\sum_{b \in \{0,1\}} \alpha_b \ket{b} \ket{x_b} \ket{\psi_{b,x_b}} \text{ or } \ket{b} \ket{x_b} \ket{\psi_{b,x_b}}$

Definition (Pauli Twirl (Informal))

- Conjugation of unitary U by random Pauli
- $(X^x Z^z)^{\dagger} U(X^x Z^z)$
- averaging over random Paulis \Rightarrow effect of Pauli

If verifier accepts, there exists a quantum state underlying the measurement result that is independent of the verifier's measurement choice

Definition (Pauli Twirl (Informal))

- Conjugation of unitary \boldsymbol{U} by random Pauli
- $(X^x Z^z)^{\dagger} U(X^x Z^z)$
- averaging over random Paulis \Rightarrow effect of Pauli

• Prover's state must have been of the form:

 $\sum_{b \in \{0,1\}} \alpha_b \left| b \right\rangle \left| x_b \right\rangle \left| \psi_{b,x_b} \right\rangle \text{ or } \left| b \right\rangle \left| x_b \right\rangle \left| \psi_{b,x_b} \right\rangle$

- $\bullet\,$ Let U be the deviation from the protocol
- Verifier's decoding is $d \cdot (x_0 \oplus x_1)$
- Part of U acting on first register computationally randomized by initial state and Verifier's decoding

If verifier accepts, there exists a quantum state underlying the measurement result that is independent of the verifier's measurement choice

Definition (Pauli Twirl (Informal))

- Conjugation of unitary \boldsymbol{U} by random Pauli
- $(X^x Z^z)^{\dagger} U(X^x Z^z)$
- averaging over random Paulis \Rightarrow effect of Pauli

• Prover's state must have been of the form:

 $\sum_{b \in \{0,1\}} \alpha_b \left| b \right\rangle \left| x_b \right\rangle \left| \psi_{b,x_b} \right\rangle \text{ or } \left| b \right\rangle \left| x_b \right\rangle \left| \psi_{b,x_b} \right\rangle$

- $\bullet\,$ Let U be the deviation from the protocol
- Verifier's decoding is $d \cdot (x_0 \oplus x_1)$
- Part of U acting on first register computationally randomized by initial state and Verifier's decoding
- $d \cdot (x_0 \oplus x_1)$ computationally indistinguishable from uniform \Rightarrow Use Pauli Twirl and U is simplified to Pauli
- U commutes with standard basis measurement $\Rightarrow U$ could have been applied before the commitment \Rightarrow measurement distribution equivalent to honest prover with commited state $|\psi'\rangle = U |\psi\rangle$

Table of Contents

Introduction

Mahadev's Protocol

Commitment Challenge Measurement

Security Properties

- 4 Relies on hardcore-bit properties
- 4 Polynomially many repetitions needed

- § Polynomially many repetitions needed
- [Ala+20] Non-interactive classical verification of quantum computation
 - Make first message instance-independent in offline-step
 - Use a parallel repetition theorem to run $3poly(\lambda)$ steps in 3 steps
 - Fiat-Shamir \Rightarrow Non-interactive (QROM)
 - classical NIZK + classical FHE \Rightarrow Zero-Knowledge (requires circuit-private FHE)

Further Work

∉ Relies on hardcore-bit properties

f Polynomially many repetitions needed

[Ala+20] Non-interactive classical verification of quantum computation

- Make first message instance-independent in offline-step
- Use a parallel repetition theorem to run $3poly(\lambda)$ steps in 3 steps
- Fiat-Shamir \Rightarrow Non-interactive (QROM)
- classical NIZK + classical FHE \Rightarrow Zero-Knowledge (requires circuit-private FHE)

[Bar+22] Succint Classical Verifcation of Quantum Computation

- Succint Key Generation based on iO / PPRF
- SNARGs in QROM

- 1. Make first message instance-independent in offline-step
 - Initial message depends on sequence of basis choices
 - Random choice correct with constant probability
 - \Rightarrow Increase copies of ground state by constant factor s.t. at least one copy with consistent assignment

- 1. Make first message instance-independent in offline-step
 - Initial message depends on sequence of basis choices
 - Random choice correct with constant probability
 - $\Rightarrow\,$ Increase copies of ground state by constant factor s.t. at least one copy with consistent assignment
- 2. Parallel repetition
 - f Private coin, rewinding (nested rejection sampling)
 - For NO instance: path of Verifier for two challenges correspond to nearly computational orthogonal projectors
 - k-fold parallel repetition: each pair of distinct challenge tuples correspond to nearly orthogonal projectors
 - Prover can only succeed in negligible fraction of challenge strings

•
$$\delta \to \delta^k$$

- 1. Make first message instance-independent in offline-step
 - Initial message depends on sequence of basis choices
 - Random choice correct with constant probability
 - \Rightarrow Increase copies of ground state by constant factor s.t. at least one copy with consistent assignment
- 2. Parallel repetition

 - For NO instance: path of Verifier for two challenges correspond to nearly computational orthogonal projectors
 - k-fold parallel repetition: each pair of distinct challenge tuples correspond to nearly orthogonal projectors
 - Prover can only succeed in negligible fraction of challenge strings
 - ${}^{\bullet}~\delta\to\delta^k$
- 3. Zero-Knowledge
 - classical NIZK + FHE
 - encryption of key provided in setup Phase

- 1. Make first message instance-independent in offline-step
 - Initial message depends on sequence of basis choices
 - Random choice correct with constant probability
 - \Rightarrow Increase copies of ground state by constant factor s.t. at least one copy with consistent assignment
- 2. Parallel repetition
 - Private coin, rewinding (nested rejection sampling)
 - For NO instance: path of Verifier for two challenges correspond to nearly computational orthogonal projectors
 - k-fold parallel repetition: each pair of distinct challenge tuples correspond to nearly orthogonal projectors
 - Prover can only succeed in negligible fraction of challenge strings
 - ${}^{\bullet}~\delta\to\delta^k$
- 3. Zero-Knowledge
 - classical NIZK + FHE
 - encryption of key provided in setup Phase
- 4. Fiat-Shamir
 - $c = \mathcal{H}(H_x, \mathsf{pk}, y)$
 - QROM

Succint classical verification of quantum computation

- 1. "Succint batch key generation algorithm"
 - outputs short description of many (pk, sk) pairs
 - can be constructed from iO + PPRFs
 - compose succint key generation with TCF+
- 2. provides template for succint arguments for QMA

• Quantum computations have an advantage over classical computations

- Quantum computations have an advantage over classical computations
- Mahadev's Protocol
 - verifying quantum computations with quantum-secure cryptography and interaction
 - Verifier chooses basis measurement and sends TCF+ or TIF+
 - Prover commits classically to a claw
 - Verifier picks test challenge or Hadamard measurement
 - Prover measures and sends result to Verifier

- Quantum computations have an advantage over classical computations
- Mahadev's Protocol
 - verifying quantum computations with quantum-secure cryptography and interaction
 - Verifier chooses basis measurement and sends TCF+ or TIF+
 - Prover commits classically to a claw
 - Verifier picks test challenge or Hadamard measurement
 - Prover measures and sends result to Verifier
- Complete, Soundness (reduce perfect attackers to trivial attackers)

- Quantum computations have an advantage over classical computations
- Mahadev's Protocol
 - verifying quantum computations with quantum-secure cryptography and interaction
 - Verifier chooses basis measurement and sends TCF+ or TIF+
 - Prover commits classically to a claw
 - Verifier picks test challenge or Hadamard measurement
 - Prover measures and sends result to Verifier
- Complete, Soundness (reduce perfect attackers to trivial attackers)
- Application of parallel repetition, FS possible
- ZK possible
- Succint arguments with succint key generation based on iO / PPRF possible

References I

- [Ala+20] Gorjan Alagic et al. "Non-interactive Classical Verification of Quantum Computation". In: Theory of Cryptography. Springer International Publishing, 2020, pp. 153–180. DOI: 10.1007/978-3-030-64381-2_6. URL: https://doi.org/10.1007%2F978-3-030-64381-2_6.
- [Bar+22] James Bartusek et al. Succinct Classical Verification of Quantum Computation. 2022. arXiv: 2206.14929 [quant-ph].
- [BL08] Jacob D. Biamonte and Peter J. Love. "Realizable Hamiltonians for universal adiabatic quantum computers". In: *Physical Review A* 78.1 (July 2008). DOI: 10.1103/physreva.78.012352. URL: https://doi.org/10.1103%2Fphysreva.78.012352.
- [Bra+20] Zvika Brakerski et al. Simpler Proofs of Quantumness. 2020. arXiv: 2005.04826 [quant-ph].
- [FHM18] Joseph F. Fitzsimons, Michal Hajduš ek, and Tomoyuki Morimae. "Post hoc verification with a single prover". In: *Physical Review Letters* 120.4 (Jan. 2018). DOI: 10.1103/physrevlett.120.040501. URL: https://doi.org/10.1103%2Fphysrevlett.120.040501.

References II

- [KSV02] Alexei Y. Kitaev, A. H. Shen, and Mikhail N. Vyalyi. "Classical and Quantum Computation". In: Graduate Studies in Mathematics. 2002. URL: https://api.semanticscholar.org/CorpusID:119772104.
- [Mah18] Urmila Mahadev. Classical Verification of Quantum Computations. 2018. arXiv: 1804.01082 [quant-ph].