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Quantum Computations

Quantum computation give an advantage over
classical computation in

• Simulating Quantum Systems

• Optimization

• Factorization / Discrete Logarithms

• . . .

Verifying quantum computations is important:

• Errors in computations / Verifying integrity

• Validation of Quantum Algorithms

• Verifying Quantum Supremacy

• Building Trust

• . . .

Verifying quantum computations classically is not feasible
⇒ Mahadev’s Protocol: Use cryptography and interact classically with the quantum computer
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Short History Lesson

• 2004: Question whether a classical computer can verify the result of a quantum computation
through interaction is raised.

• BQP ⊆ PSPACE = IP, but powerful prover

• What if the Prover has to be efficient?

• Approach 1: Verifier has access to small quantum computer (error-correcting codes)

• Approach 2: Play multiple provers against each other (CHSH)

• Can we verify by only interacting with one prover without small quantum computer?
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Verifying quantum computation with trusted measurement device

• [KSV02]: k-local Hamiltonian is QMA-complete (quantum analogue of NP). An eigenstate
with sufficiently low energy is witness.

• [BL08]: Energy can be estimated by standard/Hadamard basis measurements.
• [FHM18]: Protocol with trusted measurement device:

1. Verifier reduces x to local Hamiltonian Hx
2. Verifier requests state from prover
3. Verifier checks if received state has low energy with respect to Hx. If energy is low, Verifier accepts.

H/S

• What if we don’t have access to trusted measurement device?
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Mahadev’s Protocol - Overview

≤LWE

• Measurement protocol: Classical verifier (BPP) using q. prover (BQP) as trusted measurement
device
• Forces Prover to:

• construct n qubit state of her choice
• measure each qubit in Hadamard or Standard basis
• report measurement result to verifier

• Soundness enforced based on LWE assumption: If verifier accepts, there exists a quantum state
underlying the measurement result that is independent of the verifier’s measurement choice
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Commitment Phase

Definition (TCF+)

A function family F = {fi,0, fi,1 : X → D} is
called TCF+ if

• there exists ppt GenF : (i, tdi)← GenF (1
λ)

• fi,0, fi,1 injective with same image

• there exists ppt Inv that given i, tdi, y ∈ D,
finds both preimages: (x0, x1)← Inv(i, tdi, y)

• adaptive Hardcore bit: ∀d 6= 0∀ claws (x0, x1)
is is hard to compute both d · (x0 ⊕ x1) and a
preimage x0 or x1; ∃ d s.t. ∀ claws (x0, x1)
the bit d · (x0 ⊕ x1) is the same and
indistinguishable from uniform

approximate TCF+ can be built from LWE

≤LWE

fi,0, fi,1

y

• The Verifier samples TCF+ functions and
sends fi,0, fi,1 to the Prover.

• Prover entangles a quantum state of his
choice with a claw y = fi,0(x0) = fi,1(x1) and
sends y to the verifier

|ψ〉 =
∑

b∈{0,1}

αb |b〉 →
∑
x∈X

∑
b∈{0,1}

αb |b〉 |x〉 |fi,b(x)〉
fi,b(x)=y−−−−−−→

∑
b∈{0,1}

αb |b〉 |xb〉 = Enc(|ψ〉)
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Challenge

TEST

• Verifier requests preimage (b, xb) of y

Enc(|ψ〉) =
∑

b∈{0,1}

αb |b〉 |xb〉

⇒ Prover can measure in standard basis and
sends result to the prover

H-MEASURE

• Prover applies H to entire encoded state,
measures second register and sends result r to
the verifier

Enc(|ψ〉) H−→ Xd·(x0⊕x1)H |ψ〉

• Verifier decodes measurement by XORing
d · (x0 ⊕ x1) to r

≤LWE

fi,0, fi,1

y

TEST/H-MEASURE
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Standard Basis Measurement

Definition (TIF+)

A function family G = {gi,0, gi,1 : X → D} is
called TIF+ if

• there exists ppt GenG : (i, tdi)← Gen
(
G1

λ)

• gi,0, gi,1 injective with distinct images

• there exists ppt InvG that given, i, tdi, y ∈ D
finds preimage x← InvG(i, tdi, y)

• (fi,0, fi,1) computationally indistinguishable
from (gi,0, gi,1)

This acts as standard basis measurement:

|ψ〉 =
∑

b∈{0,1}

αb |b〉 →
∑
x∈X

∑
b∈{0,1}

αb |b〉 |x〉 |gi,b(x)〉

Given y = gi,b(x) the Verifier can reconstruct
measurement result b using trapdoor

≤LWE

gi,0, gi,1

y

TEST/H-MEASURE

Verifier uses y to recover measurement result;
ignores Hadamard measurement result
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Protocol - Overview

≤LWE

(fi,0, fi,1) or (gi,0, gi,1)

y

TEST/H-MEASURE

Verifier chooses basis:

• Hadamard: send TCF+ (fi,0, fi,1)

• Standard: send TIF+ (gi,0, gi,1)

Verifier either:

• tests state structure or

• request measurement result

⇒ Apply this protocol for every qubit in parallel

Mahadev’s Protocol | 11 / 19
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Completeness

• Reduce problem to k-local-Hamiltonian

• Verifier chooses measurement basis

• Prover commits to ground state

• Prover measures honestly and sends measurement result

• Verifier can deduce that the commited state has low enough energy

Security Properties | 13 / 19



Soundness
If verifier accepts, there exists a quantum state underlying the measurement result that is independent
of the verifier’s measurement choice

≤LWE

gi,0, gi,1

y

TEST

(b, xb)

Definition (Pauli Twirl (Informal))

• Conjugation of unitary U by random Pauli

• (XxZz)†U(XxZz)

• averaging over random Paulis ⇒ effect of
Pauli

• Prover’s state must have been of the form:∑
b∈{0,1}

αb |b〉 |xb〉 |ψb,xb〉 or |b〉 |xb〉 |ψb,xb〉

• Let U be the deviation from the protocol

• Verifier’s decoding is d · (x0 ⊕ x1)
• Part of U acting on first register

computationally randomized by initial state
and Verifier’s decoding

• d · (x0 ⊕ x1) computationally indistinguishable
from uniform ⇒ Use Pauli Twirl and U is
simplified to Pauli

• U commutes with standard basis measurement
⇒ U could have been applied before the
commitment ⇒ measurement distribution
equivalent to honest prover with commited
state |ψ′〉 = U |ψ〉
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Further Work

 Relies on hardcore-bit properties

 Polynomially many repetitions needed

[Ala+20] Non-interactive classical verification of quantum computation

• Make first message instance-independent in offline-step
• Use a parallel repetition theorem to run 3poly(λ) steps in 3 steps
• Fiat-Shamir ⇒ Non-interactive (QROM)
• classical NIZK + classical FHE ⇒ Zero-Knowledge (requires circuit-private FHE)

[Bar+22] Succint Classical Verifcation of Quantum Computation

• Succint Key Generation based on iO / PPRF
• SNARGs in QROM

Further Work | 16 / 19
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[Ala+20] Non-interactive classical verification of quantum computation

1. Make first message instance-independent in offline-step
• Initial message depends on sequence of basis choices
• Random choice correct with constant probability
⇒ Increase copies of ground state by constant factor s.t. at least one copy with consistent assignment

2. Parallel repetition
 Private coin, rewinding (nested rejection sampling)
• For NO instance: path of Verifier for two challenges correspond to nearly computational orthogonal

projectors
• k-fold parallel repetition: each pair of distinct challenge tuples correspond to nearly orthogonal

projectors
• Prover can only succeed in negligible fraction of challenge strings
• δ → δk

3. Zero-Knowledge
• classical NIZK + FHE
• encryption of key provided in setup Phase
 Assumption: setup by trusted third party

4. Fiat-Shamir
• c = H(Hx, pk, y)
• QROM

Further Work | 17 / 19
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Succint classical verification of quantum computation

1. “Succint batch key generation algorithm”
• outputs short description of many (pk, sk) pairs
• can be constructed from iO + PPRFs
• compose succint key generation with TCF+

2. provides template for succint arguments for QMA

Further Work | 18 / 19



Summary

• Quantum computations have an advantage over classical computations

• Mahadev’s Protocol

• verifying quantum computations with quantum-secure cryptography and interaction
• Verifier chooses basis measurement and sends TCF+ or TIF+
• Prover commits classically to a claw
• Verifier picks test challenge or Hadamard measurement
• Prover measures and sends result to Verifier

• Complete, Soundness (reduce perfect attackers to trivial attackers)

• Application of parallel repetition, FS possible

• ZK possible

• Succint arguments with succint key generation based on iO / PPRF possible
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