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Motivation

Can we compute Quantum Circuits with small set of Basis gates?

Can we compute efficiently with this set of Basis gates?
Is the complexity of quantum algorithms dependent on supported Basis gates?
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Elementary gates

a NOT a a
a AND b

b

a
a OR b

b

a
a XOR b

b

a
a NAND b

b

a
a NOR b

b

Every gate that we can think of can be described by a truth table



Universality

• Claim: There exists a universal gate set s.t. we can compute every function
f : {0, 1}n → {0, 1}m ⇒ Proof by induction

• Consider f : {0, 1}n → {0, 1}
• n = 1: Four possible functions (truth table)

• f0(x1, . . . , xn) ≡ f(0, x1, . . . , xn), f1(x1, . . . , xn) ≡ f(1, x1, . . . , xn)

• f(x) = (x0 · f0(x1, . . . , xn))⊕ (x0 · f1(x1, . . . , xn))

• NAND gate is universal (exercise)
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Goal

Express an arbitrary n-Qubit gate with a sequence of 1-Qubit gates and CNOT
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Arbitrary Unitary Gates

• Fact: M can be represented as M =

(
L1 0
0 L2

)
·
(
C S
−S C

)
·
(
R1 0
0 R2

)
where

C, S are diagonal matrices with real entries and C2 + S2 = I

M =

Ry

R1 R2 L1 L2

• Uniformly Controlled Rotation can be implemented with CNOT and rotation gates

⇒ n-Qubit gates can be expressed as a sequence of controlled gates, CNOT gates,
and rotation gates
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Goal

Express controlled gates as a sequence of 1-Qubit gates and CNOT



1-Qubit Gates

SU(2) =

{(
α −β
β α

)
| α, β ∈ C, |α|2 + |β|2 = 1

}

• arbitrary unitary 2× 2 matrix only differs by global phase shift (exercise)

• every matrix M ∈ SU(2) can be represented as M = Rz(α) ·Ry(θ) ·Rz(β)



Controlled Gates

Lemma
For any M ∈ SU(2), there exist matrices A,B,C s.t. A ·B · C = I and
A ·X ·B ·X · C = M .

M
=

C B A

• for arbitrary unitary 2× 2 matrix additional controlled phase gate (relative phase
shift)



Controlled Gates - Proof

M = Rz(α) ·Ry(θ) ·Rz(β)

Set A = Rz(α) ·Ry
(
θ
2

)
, B = Ry

(
− θ

2

)
·Rz

(
−α+β

2

)
, C = Rz

(
β−α
2

)
.

A ·B · C = Rz(α) ·Ry
(
θ

2

)
·Ry

(
−θ

2

)
·Rz

(
−α+ β

2

)
·Rz

(
β − α

2

)

= Rz(α) ·Rz(−α)

= I
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Controlled Gates II

M ∈ SU(2)

M

=

C B A

⇒ Multiple-Controlled gates can be realized with Multiple-Controlled Toffoli gates



Goal

Express Multiple-Controlled Toffoli gates as a sequence of 1-Qubit gates and CNOT



Multiple-Controlled Toffoli gates

=

⇒ Multiple-Controlled Toffoli gates can be realized with Toffoli gates



Toffoli gates

=

√
X

√
X
† √

X

⇒ Toffoli gate can be realized with controlled 1-Qubit gates and CNOT. Controlled
1-Qubit gates can be realized using previous lemma.



Quick Recap

• Arbitray Unitary ⇒ Controlled gates, 1-Qubit gates, and CNOT via CSD

• Controlled Gates ⇒ Toffoli gates and Single-Controlled gates

• Toffoli gate ⇒ Single-Controlled gates and CNOT

• Single-Controlled gate ⇒ 1-Qubit gates and CNOT via Lemma

• quantum circuits can be implemented exactly

• But: Discrete Universal Gate Set more practical (H,Ph,CNOT, T are universal)

• Question: Can we efficiently approximate quantum circuits?

⇒ Solovay-Kitaev
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Informal

Given an appropriate subset of SU(2), we can efficiently approximate every possible
element in SU(2) arbitrarily well.



History Overview

1995 Solovay announces the SU(2) result over an email list

1997 Kitaev publishes result for SU(d) with algorithm

2000 During a talk, Solovay says that “to my great sorrow, I have to use the inverses”.
The lecture is interrupted by a fire alarm.

2010s Results on most efficient compilation for specific sets

2016 Sardharwalla, Cubitt, Harrow, Linden show how Pauli group can be used to
produce approximate inverses.

2017 Bouland, Ozols: Property can be generalized to any gate set which contains an
irreducible representation of a finite group.

2020 Oszmaniec, Sawicki, Horodecki: Non-constructive inverse-free Solovay-Kitaev
using results about spectral gaps of random walks on compact groups

2021 Bouland, Giurgica-Tiron: Constructive inverse-free Solovay-Kitaev
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Informal

Given an appropriate subset of SU(2), we can efficiently approximate every possible
element in SU(2) arbitrarily well.



Useful definitions - metric spaces
Let (X, d) be a metric space.

Definition
Let A,N ⊂ X where N ist finite and ε > 0. N is called ε-net for A if

∀a ∈ A ∃p ∈ N : d(a, p) < ε

Example

{0, 1} is a 2/3-net for the interval [0, 1] but not for the interval [0, 2].

Definition
D ⊂ X is dense in X if

∀x ∈ X ∀ε > 0 ∃p ∈ D : d(x, p) < ε

Example

Q is dense in R. N is not dense in R.
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Useful definitions - trace norm

Definition

||A|| := tr |A| = tr
√
A†A

is called the trace norm.

The metric induced by the trace norm is given by d(A,B) := ||A−B|| and satisfies
the following properties:

• unitary invariance: ||UAV || = ||A|| for any unitaries U and V ,

• triangle inequality: ||A+B|| ≤ ||A|| + ||B||,
• submultiplicativity: ||AB|| ≤ ||A|| · ||B||



Informal

Given an appropriate subset of SU(2), we can efficiently approximate every possible
element in SU(2) arbitrarily well.



Gate set

• Let G ⊂ SU(2) be a gate set.

• For the proof of Solovay-Kitaev we need G to be closed under inverses or do we?

• Notation: G` =
{
gα1
1 gα2

2 . . . gα`
` | gi ∈ G, αi = ±1

}
, 〈G〉 := G0 ∪ G1 ∪ G2 ∪ . . .

• Solovay-Kitaev: We assume that G is finite subset of SU(2) that is closed under
inverses and 〈G〉 is dense in SU(2).
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Solovay-Kitaev Theorem

Theorem
There is a constant c s.t. for any G that is closed under inverses and 〈G〉 is dense in
SU(2) and ε > 0 one can choose ` = O(logc(1/ε)) so that G` is an ε-net for SU(2).
Furthermore, there exists an efficient algorithm that finds this approximation.

In other words: The overhead of computing with a discrete universal gate set is
poly-logarithmic.



Algorithm - Idea
Let Sε := {U ∈ SU(2) | ||U − I|| < ε} be an open ε-ball in SU(2) around the identity

Construct series of ε-nets Γ0, Γ1, . . . s.t.

• Γ0 is ε(0)2-net for SU(2) and

• Γk is ε(k)2-net for Sε(k) for k > 0.

1. Start with initial approximation

2. Attack remaining distance with
techniques that rely on being near the
identity

3. Express precise matrices near the
identity as strings of less precise
matrices that are farther from the
identity
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Algorithm - Idea II

• Initial net Γ0 can be created in
constant time

• recursively: Γk = JΓk−1,Γk−1K :=
{JA,BK | A,B ∈ Γk−1} where
JA,BK = ABA†B† denotes the group
commutator

Figure: Taking group commutator of elements
in Sε fills in Sε2 much more densely (Shrinking
Lemma)
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Shrinking Lemma

Lemma
There exist ε′, s s.t. for any G and ε ≤ ε′
we have: If G` is an ε2-net for Sε then
G5` is an sε3-net for S√

sε3

Corollary

There exist ε′, s s.t. for any G, ε0 ≤ ε′, and
k ∈ N we have: If G`0 is an ε2-net for Sε0
then G`k is an ε2k-net for Sεk where

`k := 5k`0 and εk := (sε0)
(3/2)k/s.
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Proof Solovay-Kitaev Idea

Theorem
There is a constant c s.t. for any G and ε > 0 one can choose ` = O(logc(1/ε)) so
that G` is an ε-net for SU(2).

Corollary

There exist ε′, s s.t. for any G, ε0 ≤ ε′, and k ∈ N we have: If G`0 is an ε2-net for Sε0
then G`k is an ε2k-net for Sεk where `k := 5k`0 and εk := (sε0)

(3/2)k/s.

The corollary allows to obtain good approximation for any element of SU(2) that is
sufficiently close to identity. We now have to obtain a good approximation for any
element of SU(2).
Start with rough approximation and use shrinking lemma.



Proof Solovay-Kitaev / Algorithm

1. Choose ε0 wisely

2. 〈G〉 dense in SU(2) ⇒ Choose `0 s.t.
G`0 is ε20-net for SU(2).

3. Apply Shrinking Lemma repeatedly

4. Stop if given accuracy is reached

SK(U,n)

Input: U ∈ SU(2), depth n

Ouptut: V ∈ 〈G〉 s.t. ||U − V || < ε2(n)

if n = 0 do

V = ε2(0)− APPROX(U,GI)

else

W = SK(U, n− 1)

A,B = FACTOR(UW †)

V = JSK(A,n− 1),SK(B,n− 1)KW



Proof Solovay-Kitaev: Step 1
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approximaton to our gate

1. Choose ε0 wisely

2. 〈G〉 dense in
SU(2) ⇒
Choose `0 s.t.
G`0 is ε20-net for
SU(2).

3. Apply Shrinking
Lemma
repeatedly

4. Stop if given
accuracy is
reached
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Given U ∈ SU(2) we can choose U0 ∈ G`0 s.t. ||U − U0|| < ε20.

Define ∆1 := UU †0 . Then:

||∆1 − I|| =
∣∣∣∣∣∣(U − U0)U

†
0

∣∣∣∣∣∣ = ||U − U0|| < ε20 < ε1

⇒ ∆1 ∈ Sε1

1. Choose ε0 wisely

2. 〈G〉 dense in
SU(2) ⇒
Choose `0 s.t.
G`0 is ε20-net for
SU(2).

3. Apply Shrinking
Lemma
repeatedly

4. Stop if given
accuracy is
reached
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4. Stop if given
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reached
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Proof Solovay-Kitaev: Step 4

After k steps: Uk ∈ G`k s.t. ||U − UkUk−1 . . . U0|| < ε2k

#(gates) =
∑k

m=0 `m =
∑k

m=0 5m`0 = 5k+1−1
4 `0 <

5
45k`0 with

accuracy ε2k.
What is k?

ε2k =
(

(sε0)
(3/2)k /s

)2
= ε

Solve for k: (
3

2

)k
=

log(1/s2ε)

2 log(1/sε0)
= 5k/c

for c ≈ 4.

1. Choose ε0 wisely

2. 〈G〉 dense in
SU(2) ⇒
Choose `0 s.t.
G`0 is ε20-net for
SU(2).

3. Apply Shrinking
Lemma
repeatedly

4. Stop if given
accuracy is
reached

#(gates) < 5
45k`0 = 5

4

(
3
2

)kc
`0 = 5

4

(
log(1/s2ε)
2 log(1/sε0)

)c
`0 = O(logc(1/ε))
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Shrinking Lemma

Lemma
There exist ε′, s s.t. for any G and ε ≤ ε′ we have: If G` is an ε2-net for Sε then
G5` is an sε3-net for S√

sε3

To prove this lemma, we have to transform the parameters (`, ε2, ε) 7→ (5`, sε3,
√
sε3)
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Proof Shrinking Lemma

(`, ε2, ε) 7→ (4`, sε3, ε2) 7→ (5`, sε3,
√
sε3)

Goal: Approximate U in Sε2

Idea: Use Group commutator JV,W K = VWV †W †

Problem: complicated operation
Fact: Near identity we can use matrix commutator [A,B] = AB −BA instead of
group commutator

V = e−iA,W = e−iB JV,W K

A,B [A,B]

J·,·K

[·,·] ?

||A|| < ε, ||B|| < ε,
∣∣∣∣∣∣qe−iA, e−iBy

− e−[A,B]
∣∣∣∣∣∣ ≤ O(ε3)
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Proof Shrinking Lemma

(`, ε2, ε) 7→ (4`, sε3, ε2) 7→ (5`, sε3,
√
sε3)

Goal: Approximate U in Sε2

Idea: Use Group commutator JV,W K = VWV †W †

Matrix commutator for SU(2): V = u(~a) := e−
i
2
~a·~σ,W = u(~b) = e−

i
2
~b·~σ where

~r · ~σ = rxX + ryY + rzZ

[X,Y ] = 2iZ, [Y,Z] = 2iX, [Z,X] = 2iY ⇒ [~a · ~σ,~b · ~σ] = 2i(~a×~b)~σ

u(~a×~b) = e−[ 12~a·~σ,
1
2
~b·~σ]

⇒
∣∣∣∣∣∣JV,W K− u(~a×~b)

∣∣∣∣∣∣ = O(ε3)
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Proof Shrinking Lemma

(`, ε2, ε) 7→ (4`, sε3, ε2) 7→ (5`, sε3,
√
sε3)

Goal: Approximate U = u(~x) in Sε2 , |~x| < ε2

Main Idea:

• Write ~x = ~y × ~z with |~y|, |~z| ≤ ε
• Approximate u(~y), u(~z) with ~y0, ~z0 s.t. u(~y0), u(~z0) ∈ G` is ε2-approximation

||u(~x)− Ju(~y0), u(~z0)K|| ≤ ||u(~x)− u(~y0 × ~z0)||+ ||u(~y0 × ~z0)− Ju(~y0), u(~z0)K|| ≤ sε3

⇒ Ju(~y0), u(~z0)K sε3-approximates U in 4` gates ⇒ sε3-net for Sε2
Now: Perform translation step: Given U ∈ S√

sε3
we can find V ∈ G` s.t.

||U − V || ≤ ε2 ⇒ UV † ∈ Sε2
Find W1,W2 ∈ G` s.t. ||JW1,W2K− UV †|| ≤ sε3 ⇒ ||JW1,W2KV − U || ≤ sε3
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Idea inverse-free Solovay-Kitaev

Original Solovay-Kitaev: We only have ε-approximations to unitaries (from previous
recursive step). We can multiply them. Gate set needs to be inverse-closed.
Goal: Find correct sequence to get higher precision.

Now: Solovay-Kitaev without inverses
2016: Sardharwalla, Cubitt, Harrow, Linden: Approximate inverses with
O(ε2)-precision suffices. Pauli group can be used.
How to do in general?
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Self-correcting sequences

Definition
Consider operators {g1, . . . , gk} ⊂ SU(d) and set of corresponding ε-approximate
operators {g′1, . . . , g′k} ⊂ SU(d) s.t. ||g′i − gi|| ≤ ε. A self-correcting sequence is a
word in the approximate operators which approximate the identity to a higher order in ε

g′i1 . . . g
′
iN

= I +O(εn) n > 1

Bouland, Giurgica-Tiron (2021): There exists quadratically-precise sequence in SU(d)



Bouland, Giurgica-Tiron

Use Pauli approximations

X ′ = X +O(ε)

Z ′ = Z +O(ε)

Dimension d = 2: Z ′X ′X ′Z ′X ′Z ′Z ′X ′ = I +O(ε2) N = 8

Dimension d ≥ 2:
(
Z ′X ′d

)d−1
Z ′
(
X ′Z ′d

)d−1
X ′ = I +O(ε2) N = 2d2

How to invert U : We have X ′ = X +O(ε), Z ′ = Z +O(ε), Û † = U † +O(ε)

X ′Û †U = X +O(ε)
Let J(X ′, Z ′) = I +O(ε2) be a self-correcting sequence in X ′, Z ′.

⇒ J(X ′Û †U,Z ′) = I +O(ε2)
This sequence is close to identity and in an instance of U itself. Remove U and done ;)
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Consequences & Open problems

Consequences:

• Sequence for inverses has length O(d2)
⇒ #(gates) = O(logc(1/ε)), c = O(log d).

• simplifies proofs in various areas of quantum complexity theory

• Construction could be practically useful when errors are coherent e.g. in dynamic
decoupling

Open problems:

• Reduce exponent from O(log d) to the nonconstructive upper bound of 3.

• Understand mathematics of self-correcting sequences. Generalize to other groups
and higher orders

• . . .



Solovay-Kitaev Rap by ChatGPT
Yo, let me tell you about a theorem so neat
It’s called the Solovay-Kitaev, let’s take a seat
It’s about quantum gates and approximation, you see
Making quantum computing even better, that’s the key

Solovay-Kitaev, Solovay-Kitaev
Universal quantum gates, we can achieve
Polynomial complexity, that’s the key
Approximation with precision, can’t you see?

For any finite group G and positive ε
We can approximate any U -gate with precision
Using a finite set of quantum gates, we can’t go wrong
Polylogarithmic complexity, won’t take too long

Solovay-Kitaev, Solovay-Kitaev
Universal quantum gates, we can achieve
Polynomial complexity, that’s the key
Approximation with precision, can’t you see?

With Solovay-Kitaev, we can compute with ease
More complex operations, our limits will increase
Like a puzzle, we fit the gates to get the right solution
And quantum computing will become a revolution

Solovay-Kitaev, Solovay-Kitaev
Universal quantum gates, we can achieve
Polynomial complexity, that’s the key
Approximation with precision, can’t you see?

So let’s celebrate Solovay-Kitaev, let’s give it a cheer
For the future of quantum computing is looking so
clear!

Thank You! Any Questions?
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