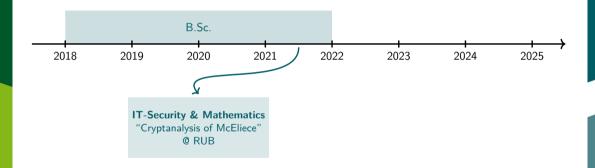
Compiled Nonlocal Games Bochum, 2024-12-10

Alexander Kulpe Chair for Quantum Information, Ruhr-University Bochum

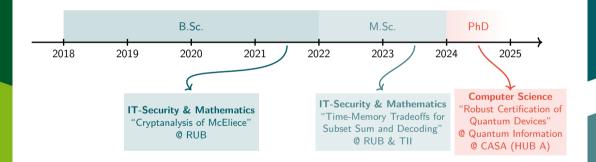
RUHR UNIVERSITÄT BOCHUM RUB

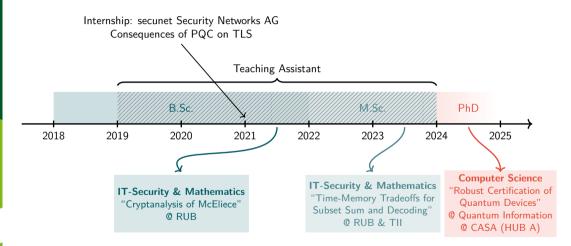

Befördert durch DEG Deutsche Forschungsgemeinschaft

About Me

Compiled Nonlocal Games | [Kul] Github Repository Master Thesis

Compiled Nonlocal Games | [Kul] Github Repository Master Thesis


2/28



CASA CYBER SECURITY IN THE AGE OF LARGE-SCALE ADVERSARIES

About Me

Compiled Nonlocal Games | [Kul] Github Repository Master Thesis

FRP "Robust Certification of Quantum Devices"

- A Use cryptography to verify properties about quantum devices, verify computations etc.
- ♠ PIs: Michael Walter (RUB) and Giulio Malavolta (Bocconi/MPI-SP)
- ✤ PostDoc: Simon Schmidt
- APhD Student: Alexander Kulpe

A Motivation

Multi-Interactive Proof Systems

😭 Quantum Basics

Compiled Nonlocal Games

A Current Research & Contributions

Motivation

Quantum Computer?

Quantum Computer?

Quantum Computer?

How to test that this box is a quantum computer?Ask it to *factor* an RSA-2048 number

Quantum Computer?

How to test that this box is a quantum computer?Ask it to *factor* an RSA-2048 number

- We would be impressed
- Maybe factoring is in P?

Quantum Computer?

- Ask it to factor an RSA-2048 number
- Run some quantum protocol (i.e. *QKD*) between two boxes

Quantum Computer?

- Ask it to factor an RSA-2048 number
- ℜ Run some quantum protocol (i.e. QKD) between two boxes
 - Practical
 - Need two quantum devices that communicate

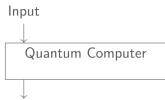
Quantum Computer?

- Ask it to factor an RSA-2048 number
- ℜ Run some quantum protocol (i.e. QKD) between two boxes
- Send some *quantum state* to the box and have it apply some operation

Quantum Computer?

- Ask it to factor an RSA-2048 number
- Run some quantum protocol (i.e. QKD) between two boxes
- Send some *quantum state* to the box and have it apply some operation
 - In principle easy
 - Verifier needs to be quantum

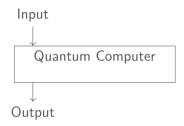
Quantum Computer?


A How to test that this box is a quantum computer?

- Ask it to factor an RSA-2048 number
- Run some quantum protocol (i.e. *QKD*) between two boxes
- Send some *quantum state* to the box and have it apply some operation

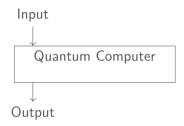
R Question: Can a *classical* verifier check that the box is quantum?

Motivation: Classically Verifying Quantum Computation



Output

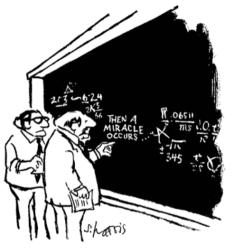
Compiled Nonlocal Games



? Question: Can a *classical* verifier check that the output is correct, i.e. can we verify the quantum computation *classically*?

- **?** Question: Can a *classical* verifier check that the output is correct, i.e. can we verify the quantum computation *classically*?
- Answer: All this and more is possible with *nonlocal games* which are special interactive protocols!

Multi-Interactive Proof Systems



- Informally: Derivation of a statement from a set of axioms using a set of inference rules
- ℜ It should be verifiable effectively (efficiently)
- \Rightarrow Static Objects

Mathematical Proofs

Informally: Derivatic rules

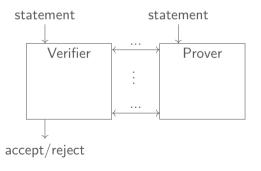
- 😭 It should be verifiabl
- \Rightarrow Static Objects

"I think you should be more explicit here in step two."

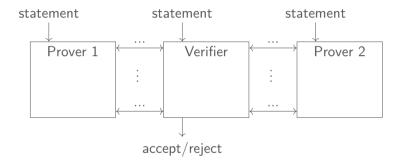
Compiled Nonlocal Games | http://www.sciencecartoonsplus.com/gallery/math/math07.gif

ising a set of inference

- Informally: Derivation of a statement from a set of axioms using a set of inference rules
- ✿ It should be verifiable effectively (efficiently)
- $\Rightarrow \ {\sf Static} \ {\sf Objects}$
- ♠ Proof process can be divided:
 - Prover, who presents proof candidate
 - A Verifier, who checks proof candidate


Compiled Nonlocal Games | http://www.sciencecartoonsplus.com/gallery/math/math07.gif

Interactive Proofs


A Prover tries to convince a verifier that statement is true

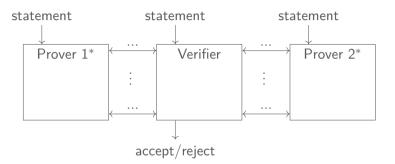
- R Verifier may ask questions
- $\Rightarrow\,$ interactive instead of static

Multi-Interactive Proof Systems

R Provers are not allowed to communicate

Quantum

Entanglement

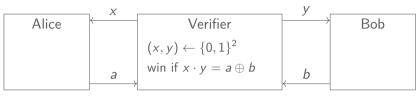

R Bit:
$$b \in \{0, 1\}$$
R Qubit: unit vector $q = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{C}^2$, i.e. $|\alpha|^2 + |\beta|^2 = 1$
R Measuring q gives us 0 w.p. $|\alpha|^2$ and 1 w.p. $|\beta|^2$.

Definition 1 (Entanglement)

If two qubits are *entangled*, their states depend on each other. Measuring one qubit influences the state of the other entangled qubit.

Compiled Nonlocal Games | Interested in quantum? M. Nielsen & I. Chuang (2010). Quantum Computation and Quantum Information (10th ed.) 13/28

CASA CYBER SECURITY IN THE AGE OF LARGE-SCALE ADVERSARIES


MIP*

Quantum Provers are not allowed to communicate, but they are allowed to share entangled states

Compiled Nonlocal Games | Interested in quantum? M. Nielsen & I. Chuang (2010). Quantum Computation and Quantum Information (10th ed.) 14/28

Nonlocal Games

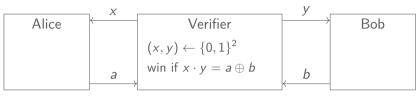
There exists a classical strategy that wins w.p. 75 %

X	У	winning condition
0	0	$a \oplus b = 0$
0	1	$a\oplus b=0$
1	0	$a \oplus b = 0$
1	1	$a\oplus b=1$

winning condition

 $a \oplus b = 0$

 $a \oplus b = 0$


 $a \oplus b = 0$ $a \oplus b = 1$

 $X \mid V$

0 0

0 1

0

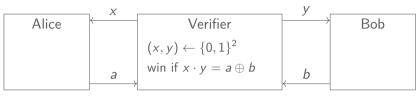
- There exists a classical strategy that wins w.p. 75 %
- $\ref{eq:matrix}$ There does not exists a classical strategy that wins w.p. >75~%

winning condition

 $a \oplus b = 0$

 $a \oplus b = 0$

 $a \oplus b = 0$


 $a \oplus b = 1$

 $X \mid V$

0 0

0 1

0

1	There	exists	а	classical	strategy	that	wins	w.p.
	75 %							

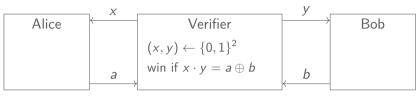
- $\ref{eq:constraint}$ There does not exists a classical strategy that wins w.p. >75~%
- $\ref{eq:matrix}$ There exists a quantum strategy that wins w.p. \approx 85 %

winning condition

 $a \oplus b = 0$

 $a \oplus b = 0$

 $a \oplus b = 0$

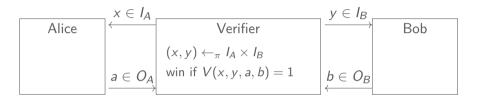

 $a \oplus b = 1$

 $X \mid V$

0 0

0

0



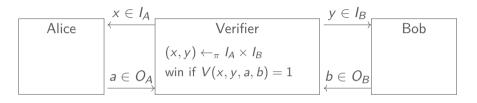
- There exists a classical strategy that wins w.p. 75 %
- $\ref{eq:matrix}$ There does not exists a classical strategy that wins w.p. >75~%
- $\ref{eq:matrix}$ There exists a quantum strategy that wins w.p. \approx 85 %

If Alice and Bob win with probability > 75 % they must have quantum capabilities!

Nonlocal Games

 \blacksquare I_A, I_B input sets

 $\ref{main term} \pi$ distribution on questions; known to Alice and Bob


 \textcircled{O}_A, O_B output sets

 \clubsuit V function, that decides whether Alice and Bob win or not; known to Alice and Bob

Compiled Nonlocal Games | J. Bell (1964). On the einstein podolsky rosen paradox Physics Physique Fizika, 1(3), 195.

Nonlocal Games

 \blacksquare I_A, I_B input sets

 $\P \pi$ distribution on questions; known to Alice and Bob

 \textcircled{O}_A, O_B output sets

 \clubsuit V function, that decides whether Alice and Bob win or not; known to Alice and Bob

😭 Alice and Bob try to maximize their winning probability

Compiled Nonlocal Games | J. Bell (1964). On the einstein podolsky rosen paradox Physics Physique Fizika, 1(3), 195.

Definition 2 (Self-test)

There are games where the best strategy is unique, i.e. the provers have to perform specific operations, used specific shared state, need a mininum amount of quantum memory.

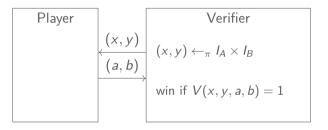
Applications:

- Certify properties of quantum devices
- **R** Certified randomness expansion
- Device-independent quantum cryptography
- A Classical verification of quantum computation

Definition 2 (Self-test)

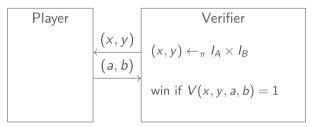
There are games where the best strategy is unique, i.e. the provers have to perform specific operations, used specific shared state, need a mininum amount of quantum memory.

Applications:


- Certify properties of quantum devices
- **R** Certified randomness expansion
- Device-independent quantum cryptography
- A Classical verification of quantum computation

BUT: The provers are not allowed to communicate! How can we enforce this? Can we achieve the same with one player instead of two?

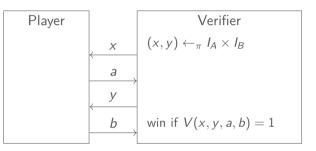
Compiled Nonlocal Games


First Try: Playing In Parallel

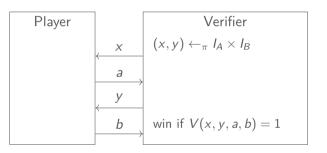
First Try: Playing In Parallel

Does not work!

If the player knows both questions before answering, he can adaptively choose a and b dependent on **both** questions. In this case CHSH can be won perfectly


Second Try: Playing Sequentially

Second Try: Playing Sequentially


Better, but still does not work!

The first two messages simulate Alice's part. But in in the second part, the player knows x, a, y instead of only y and can choose b adaptively. In this case CHSH can be won perfectly

Compiled Nonlocal Games

Second Try: Playing Sequentially

Idea

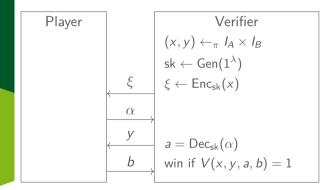
Use cryptography to ensure that the player does not know x, a when providing b.

Definition 3 (Quantum Fully Homomorphic Encryption)

- A QFHE scheme consists of a tuple of algorithms (Gen, Enc, Eval, Dec) such that
 - R (Gen, Enc, Dec) is a usual encryption scheme
 - Eval allows to perform arbitrary efficient mathematical operations on the encrypted data, for example

$$\begin{aligned} & \mathsf{Enc}(x_1 + x_2) \leftarrow \mathsf{Eval}(+, \mathsf{Enc}(x_1), \mathsf{Enc}(x_2)) \\ & \mathsf{Enc}(x_1 \cdot x_2) \leftarrow \mathsf{Eval}(\cdot, \mathsf{Enc}(x_1), \mathsf{Enc}(x_2)) \\ & \mathsf{Enc}(f(x)) \leftarrow \mathsf{Eval}(f, \mathsf{Enc}(x)) \end{aligned}$$

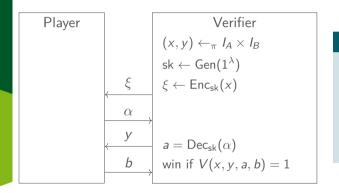
Definition 3 (Quantum Fully Homomorphic Encryption)


- A QFHE scheme consists of a tuple of algorithms (Gen, Enc, Eval, Dec) such that
- ℜ (Gen, Enc, Dec) is a usual encryption scheme
- Eval allows to perform arbitrary efficient mathematical operations on the encrypted data, for example

$$\begin{aligned} &\mathsf{Enc}(x_1 + x_2) \leftarrow \mathsf{Eval}(+, \mathsf{Enc}(x_1), \mathsf{Enc}(x_2)) \\ &\mathsf{Enc}(x_1 \cdot x_2) \leftarrow \mathsf{Eval}(\cdot, \mathsf{Enc}(x_1), \mathsf{Enc}(x_2)) \\ &\mathsf{Enc}(f(x)) \leftarrow \mathsf{Eval}(f, \mathsf{Enc}(x)) \end{aligned}$$

A QFHE scheme is called *quantum-secure* if no efficient quantum adversary can distinguish between $Enc(x_1), Enc(x_2)$.

KLVY Compiler



Compiled Nonlocal Games | Y. Kalai, et al. (2023). Quantum advantage from any Nonlocal game STOC.

KLVY Compiler

KLVY Results

- Players in the compiled game can be at least as good as in the nonlocal game!
- Classical Players cannot do better in the compiled game

Open Question: Can quantum players do better in the compiled game or not?

Compiled Nonlocal Games | Y. Kalai, et al. (2023). Quantum advantage from any Nonlocal game STOC.

Current Research & Contributions

Quantum Soundness

ANZ23: Quantum player in the CHSH game cannot do better in the compiled game

Compiled Nonlocal Games | A. Natarajan, et al. Bounding the quantum value of compiled nonlocal games: from CHSH to BQP verification FOCS'23 D Cui, et al. A Computational Tsirelson's Theorem for the Value of Complex XOR Games. TQC'24, arXiv:2402.17301. A. Kuipe, G. Malavolta, C. Paddock, S. Schmidt, M. Walter A bound on the quantum value of all compiled nonlocal games arXiv:2408.06711. 25/28

Quantum Soundness

NZ23: Quantum player in the CHSH game cannot do better in the compiled game
 CMMNSWZ24: Quantum players for the class of XOR games (including CHSH) cannot do better in the compiled game

Compiled Nonlocal Games | A. Natarajan, et al. Bounding the quantum value of compiled nonlocal games: from CHSH to BQP verification FOCS'23 D Cui, et al. A Computational Tsirelson's Theorem for the Value of Compiled XOR Games. TQC'24, arXiv:2402.17301. A. Kulpe, G. Malavolta, C. Paddock, S. Schmidt, M. Walter A bound on the quantum value of all compiled nonlocal games arXiv:2408.06711. 25/28

Quantum Soundness

NZ23: Quantum player in the CHSH game cannot do better in the compiled game

- ✿ CMMNSWZ24: Quantum players for the class of XOR games (including CHSH) cannot do better in the compiled game
- **KMPSW**24: Quantum players for any nonlocal game cannot do better in the compiled game

Accepted in QIP'25 & submitted to STOC'25

Compiled Nonlocal Games | A. Natarajan, et al. Bounding the quantum value of compiled nonlocal games: from CHSH to BQP verification FOCS'23 D Cui, et al. A Computational Tsirelson's Theorem for the Value of Compiled XOR Games. TQC'24, arXiv:2402.17301. A. Kulpe, G. Malavolta, C. Paddock, S. Schmidt, M. Walter A bound on the quantum value of all compiled nonlocal games arXiv:2408.06711. 25/28

Alternative Compiler

- ℜ KLVY uses QFHE as cryptographic primitive. Currently, we only know two ways to construct a QFHE scheme.
 - 😭 LWE
 - n iO + dual-mode TCF
- Question & Master's Project: Can we get a compiler with weaker cryptographic assumptions?

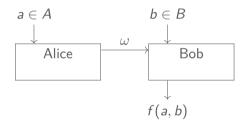
Alternative Compiler

ℜ KLVY uses QFHE as cryptographic primitive. Currently, we only know two ways to construct a QFHE scheme.

🕋 LWE

🐢 iO + dual-mode TCF

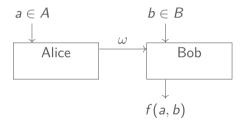
✿ Question & Master's Project: Can we get a compiler with weaker cryptographic assumptions?


Answer: Yes!

- ℜ BKMSW24: Compiler from any TCF
- ✿ Quantum players cannot do better under this compiler, too (follows from [KMP⁺24])
- Plan to submit to upcoming crypto conferences

Current Projects: Compiled Communication Complexity

- 😭 Until now: No communication between Alice and Bob
- A What if we allow some communication between Alice and Bob?



Current Projects: Compiled Communication Complexity

😭 Until now: No communication between Alice and Bob

A What if we allow some communication between Alice and Bob?

A Can we use similar compilation techniques in this scenario such that the communication that is needed for Bob to compute f(a, b) stays the same (for classical players)?

Final Slide

Many thanks for your attention!

Contact me

...if you are interested in Quantum Information, (Quantum) Cryptography, etc.
 alexander.kulpe@rub.de, MC 1/85

- [BKM⁺24] Kaniuar Bacho, Alexander Kulpe, Giulio Malavolta, Simon Schmidt, and Michael Walter. Compiled nonlocal games from any trapdoor claw-free function. Cryptology ePrint Archive, Paper 2024/1829, 2024.
- [CMM⁺24] David Cui, Giulio Malavolta, Arthur Mehta, Anand Natarajan, Connor Paddock, Simon Schmidt, Michael Walter, and Tina Zhang. A computational tsirelson's theorem for the value of compiled xor games. TQC'24, arXiv:2402.17301, 2024.

[KMP⁺24] Alexander Kulpe, Giulio Malavolta, Connor Paddock, Simon Schmidt, and Michael Walter. A bound on the quantum value of all compiled nonlocal games. arXiv:2408.06711, 2024.